On the Economics of Offline Password Cracking
نویسندگان
چکیده
We develop an economic model of an offline password cracker which allows us to make quantitative predictions about the fraction of accounts that a rational password attacker would crack in the event of an authentication server breach. We apply our economic model to analyze recent massive password breaches at Yahoo!, Dropbox, LastPass and AshleyMadison. All four organizations were using key-stretching to protect user passwords. In fact, LastPass’ use of PBKDF2-SHA256 with 10 hash iterations exceeds 2017 NIST minimum recommendation by an order of magnitude. Nevertheless, our analysis paints a bleak picture: the adopted key-stretching levels provide insufficient protection for user passwords. In particular, we present strong evidence that most user passwords follow a Zipf’s law distribution, and characterize the behavior of a rational attacker when user passwords are selected from a Zipf’s law distribution. We show that there is a finite threshold which depends on the Zipf’s law parameters that characterizes the behavior of a rational attacker — if the value of a cracked password (normalized by the cost of computing the password hash function) exceeds this threshold then the adversary’s optimal strategy is always to continue attacking until each user password has been cracked. In all cases (Yahoo!, Dropbox, LastPass and AshleyMadison) we find that the value of a cracked password almost certainly exceeds this threshold meaning that a rational attacker would crack all passwords that are selected from the Zipf’s law distribution (i.e., most user passwords). This prediction holds even if we incorporate an aggressive model of diminishing returns for the attacker (e.g., the total value of 500million cracked passwords is less than 100 times the total value of 5 million passwords). On a positive note our analysis demonstrates that memory hard functions (MHFs) such as SCRYPT or Argon2i can significantly reduce the damage of an offline attack. In particular, we find that because MHFs substantially increase guessing costs a rational attacker will give up well before he cracks most user passwords and this prediction holds even if the attacker does not encounter diminishing returns for additional cracked passwords. Based on our analysis we advocate that password hashing standards should be updated to require the use of memory hard functions for password hashing and disallow the use of non-memory hard functions such as BCRYPT or PBKDF2.
منابع مشابه
Just in Time Hashing
In the past few years billions of user passwords have been exposed to the threat of offline cracking attempts. Such brute-force cracking attempts are increasingly dangerous as password cracking hardware continues to improve and as users continue to select low entropy passwords. Key-stretching techniques such as hash iteration and memory hard functions can help to mitigate the risk, but increase...
متن کاملAn Offline Dictionary Attack against zkPAKE Protocol
Password Authenticated Key Exchange (PAKE) allows a user to establish a strong cryptographic key with a server, using only knowledge of a pre-shared password. One of the basic security requirements of PAKE is to prevent offline dictionary attacks. In this paper, we revisit zkPAKE, an augmented PAKE that has been recently proposed by Mochetti, Resende, and Aranha (SBSeg 2015). Our work shows tha...
متن کاملDecoy Password Vaults: At Least as Hard as Steganography?
Cracking-resistant password vaults have been recently proposed with the goal of thwarting offline attacks. This requires the generation of synthetic password vaults that are statistically indistinguishable from real ones. In this work, we establish a conceptual link between this problem and steganography, where the stego objects must be undetectable among cover objects. We compare the two frame...
متن کاملStrengthening Public Key Authentication Against Key Theft (Short Paper)
Authentication protocols based on an asymmetric keypair provide strong authentication as long as the private key remains secret, but may fail catastrophically if the private key is lost or stolen. Even when encrypted with a password, stolen key material is susceptible to offline brute-force attacks. In this paper we demonstrate a method for rate-limiting password guesses on stolen key material,...
متن کاملThe Improvement of YSYCT Scheme for Imbalanced Wireless Network
Recently, Yeh et al. proposed an improved password authenticated key exchange scheme (YSYCT scheme) which is secure against undetectable on-line password guessing attacks and provides the explicit key authentication. In this article, readers can understand that the YSYCT scheme still is insecure and the user’s password can be exposed by man-in-the-middle attack. Besides, an improved protocol is...
متن کامل